光纤端面处理熔接对光纤激光器功率的影响

2006/2/8/10:28来源:光纤新闻网
    摘 要:本文分类介绍了各种光纤损耗产生的原因,通过实验验证了光纤端面质量对光纤激光器输出功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。 

  关键词:光纤激光器 掺Er3+光纤 光纤研磨 光纤端面处理 光纤熔接

  1、前 言

  光纤是圆柱形介质波导由纤芯、包层和涂敷层3部分组成,一般单模和多模光纤的纤芯直径分别为5~15μm和40~100μm,包层直径大约为125~600μm。经过处理的光纤端面,理想状态是一个光滑平面。但实际中,光纤端面的加工往往不能达到理想状态,例如抛光不理想、有划痕、表面或边缘破碎损伤等等,都将使端面情况复杂化。对于光纤与激光器中其它元件的耦合以及光纤之间的熔接来说,要求光纤端部必须有光滑平整的表面,否则会增大损耗。本文分类介绍了光纤损耗产生的原因,通过实验验证了光纤端面质量对光纤激光器输出功率的影响,研究了光纤端面处理工艺流程,分析了光纤端面的切割和研磨方法,对光纤熔接过程提出了具体要求,为同类激光器的研制提供了参考依据。

  2、光纤损耗种类

  2.1光纤本征损耗

  光纤本征损耗即光纤固有损耗,主要由于光纤机基质材料石英玻璃本身缺陷和含有金属过渡杂质和OH- ,使光在传输过程中产生散射、吸收和色散,一般可分为散射损耗,吸收损耗和色散损耗。其中散射损耗是由于材料中原子密度的涨落,在冷凝过程中造成密度不均匀以及密度涨落造成浓度不均匀而产生的。吸收损耗是由于纤芯含有金属过渡杂质和OH-吸收光,特别是在红外和紫外光谱区玻璃存在固有吸收。光纤色散按照产生的原因可分为三类,即材料色散、波导色散和模间色散。其中单模光纤是以基模传输,故没有模间色散。在单模光纤本征因素中,对连接损耗影响最大的是模场直径。单模光纤本征因素引起的连接损耗大约为0.014dB,当模场直径失配20%时,将产生0.2dB的连接损耗。多模光纤的归一化频率V>2.404,有多个波导模式传输,V值越大,模式越多,除了材料色散和波导色散,还有模间色散,一般模间色散占主要地位。所谓模间色散,是指光纤不同模式在同一频率下的相位常数β不同,因此群速度不同而引起的色散。

  此外,光纤几何参数如光纤芯径、包层外径、芯/包层同心度、不圆度,光学参数如相对折射率、最大理论数值孔径等,只要一项或多项失配,都将产生不同程度的本征损耗。

  2.2光纤附加损耗

  光纤的附加损耗一般由辐射损耗和应用损耗构成。其中辐射损耗是由于光纤拉制工艺、光纤直径、椭圆度的波动、套塑层温度变化的胀缩和涂层低温收缩导致光纤微弯所致;应用损耗是由于光纤的张力、弯曲、挤压造成的宏弯和微弯所引起的损耗。

  3、实验装置与结果

  掺Er3+光纤环形腔激光器实验装置如图1所示,泵浦光由波长980nmLD尾纤输出,经波分复用器(WDM)耦合进入环形光纤谐振腔,经过耦合器分光后输出激光。其中光纤光栅中心波长为1546.3nm,掺Er3+光纤长度为3m,掺杂浓度为400ppm,隔离器工作波长范围为1535~1565nm,各元件插入损耗均为0.4dB,经上述装置输出功率与输入功率的关系曲线如图2所示,最大输出功率可达16.9mW。但由于光纤激光器各个部件之间均熔接在一起,插入损耗和熔接损耗对整个系统具有非常大的影响。在熔接质量比较好的情况下,总体光光效率可达5.3%,在光纤焊接较差的情况下,焊点漏光严重,用转换片可以看到明显的泵浦光泄露,严重影响总体光光效率,二者功率相差23%左右。因此如何降低腔内熔接损耗是影响激光器输出功率的关键因素。

[1] [2] [3] [4] 下一页 
















 

版权所有©中国激光网-慧聪网激光频道 粤ICP证B2-20040573
广告及业务联系:QQ 4793947 E-mail
咨询热线:0769-22771942、22771943 传真:0769-22771946